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Random Walk Properties of Lattices and 
Correlation Factors for Diffusion via the 
Vacancy Mechanism in Crystals 

Masahiro Koiwa I and Shunya Ishioka 1 

Random walk properties and correlation factors for diffusion via the vacancy 
mechanism are calculated and compared for various three-dimensional lattices. 
By applying the theory of random walks on an imperfect lattice, the correlation 
factor for impurity diffusion is calculated rigorously for the "five jump fre- 
quency model" in the fec lattice. 
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1. INTRODUCTION 

The movement of atoms in crystals is known to occur very commonly 
through site exchanges of atoms with vacancies. Even when the vacancy 
motion itself is ideally random, the direction of successive atom jumps is 
not random but correlated: a tracer atom having exchanged with a vacancy 
has a better than random chance of executing the reverse jump. Since this 
was first noted by Bardeen and Herring, (1) extensive theoretical studies of 
such correlation effects have been made as reviewed by LeClaire. (2) 

Most evaluations of the correlation factor which appears in the expres- 
sion for the diffusion coefficient have been made with some degree of 
approximation. The aim of this paper is to show that random walk theory 
provides a rigorous method for the evaluation of the correlation factors for 
diffusion in crystals. 
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2. RANDOM WALKS ON PERIODIC SPACE LATTICES (3~ 

Properties of random walks can be described effectively through the 
random walk generating function 

e(s,z) = f~ ~%(s)  (1) 
n = 0  

where P~ (s) is the probability that the random walker, starting his random 
walk from the origin, is at site s after the nth step. By solving an 
appropriate Green's function equation, P(s,z) can be expressed in an 
integral form; e.g., for the simple cubic lattice, 

, 
e(~,~)-  (2@ _.  1 zX(0) ao (2) 

where 

X(0) = ~(cos0~ + cos02 + cos03) 

Here we shall summarize the significance and applications of the 
quantity P(s, z) in general. 

(a) P(s, 1) is the average number of visits to site s. 
(b) The probability that the walker will visit site s is given by 

[P(s,  1) - 8s,o]/P(O, 1) (3) 

In particular for the origin, this probability is called the return proba- 
bility: 

Pr = 1 - P(0, 1) - '  (4) 

(c) The average number of distinct sites visited in an n-step walk, S,, is 
asymptotically given for large n by 

S,--(1 - p D n  (5) 

(d) The average number of jumps of a tracer atom via one vacancy in 
an infinite crystal is P(0, 1). 

(e) The critical percolation probability for site blocking, pc(s), is less 
than p~. 

The above statements (a)-(c) are verified by Montroll and Weiss, (3) 
and (d) and (e) by the present authors. (4) 

3. CORRELATION FACTOR AND THE NUMBER OF VISITS 

For the sake of simplicity, we consider tracer difussion via the vacancy 
mechanism in a cubic Bravais lattice. 
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For an ideal random walker, the diffusion coefficient, DR, is given by 

a 2 

D R = ~ (6) 

where a is the unit jump distance and ~- is the mean time for jumps of the 
walker. A tracer atom which moves through site exchanges with vacancies 
is not an ideal random walker. The diffusion coefficient of the tracer is 
therefore modified as D = D R f. 

The factor f,  which is called the correlation factor, can be written as 
(see, for example, Ref. 2) 

1 + (cos 0)  
f = 1 - (cos 0 )  (7) 

where 0 is an angle between directions of two successive jumps of the 
tracer, and ( - - - )  represents the average. For  the calculation of the 
average cosine, consider the case that the tracer has just made a jump from 
the origin, s o = 0, to a nearest neighbor site, s r.  Neighboring sites of s r  are 
designated as s~ (a = 0, 1 , . . . ,  Z - 1, where Z is the coordination num- 
ber). Then the average cosine can be written as 

z - - I  
1 (s~ (cos0)= sT- (s) 

a = 0  

where W(s,) is the average number of visits of a walker (vacancy) to site s~ 
under the condition that site ST acts as a sink. However, the numerical 
value of (cos 0)  does not change if the W(s~) are replaced by P(s, 1), which 
means the removal of the above condition; a random walk sequence 
starting from the tracer site s T yields the same average number of visits to 
all the neighboring sites s , ,  so that the net contribution to the value of 
( co s0 )  is null. Thus, the value of the correlation factor can be calculated 
by knowing the value of the relevant P(s , ,  1). 

It seems appropriate to make some remarks here. First for diffusion in 
non-Bravais lattices or in anisotropic lattices, the equations derived above 
require modifications. A generalized treatment valid for such cases has 
been given by Howard. (s) Second, the above calculation of the correlation 
factor assumes an infinitely dilute vacancy concentration. The effect of a 
finite vacancy concentration on the value of the correlation factors has 
been discussed quantitatively by Benoist, Bocquett, and Lafore, (6) Ishioka 
and Koiwa, (7) and Nakazato and Kitahara. (8) 

4, RANDOM WALK PROPERTIES OF THE THREE-DIMENSIONAL 
LATTICES 

Table I summarizes the random walk properties of various three- 
dimensional lattices so far investigated. (4'9'w) The table includes the values 
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Table I. 
i 

Coordination 
number 

Koiwa and Ishioka 

Random Walk Properties of Three-Dimensional Lattices 

Lattices P(0, 1) pr a fb Rcf. 

oct.b 1.75041086 0 .4287  0.492443 9 
Z = 4  tet.b 1.91016227 0 .4764  0.486025 9 

diamond 1.79288158 0 .4422  0.5(exact) 4 
Z =  6 sc 1.51638606 0 .3405  0.653109 10 

hcp(lim) 1.51638606 0 .3405  0.653109(z) 12 
0.644545(x) 

Z = 8 bcc 1.39320393 0 .2822  0.727194 10 
NbO 1.47621282 0 .3225  0,688916 II 

Z = 12 fcc 1.34466118 0 .2563  0.781451 10 
hcp 1.34466118 0 .2563  0.781451(z) 4 

0.781205(x) 
I 

a Pr : Return probability. 
b f:  Correlation factor. 

for lat t ices recent ly  de t e rmined  by  the present  authors .  (!1'12) A new lat t ice 
with Z = 8 consists of midpo in t s  of edges of the s imple cubic  lat t ice (Fig.  
1). Since n iob ium or  oxygen a toms  in n iob ium m o n o x i d e  ( N b O )  are  
a r ranged  in such a manner ,  the la t t ice will be  referred to as the N b O  lattice. 

The  fol lowing two features  are to be  no ted :  
(1) The  re turn  probabi l i t i es  are  smal ler  for latt ices with larger  coordi -  

na t ion  number .  A m o n g  the latt ices with the same Z number ,  the re turn  
p robab i l i t y  varies a b o u t  10%. 

(2) The  value  of the corre la t ion  fac tor  is larger  for the lat t ice with the 
larger  Z number ,  imply ing  that  the m o v e m e n t  of a t racer  is more  r andom.  
F o r  a given Z number ,  the la t t ice with the b o n d s  ex tending  over  space mos t  

Fig. 1. A new lattice with Z = 8, Since Nb or O atoms in niobium monoxide are arranged in 
such a manner, the lattice is called the NbO lattice. 
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evenly has the largest value of the correlation factor; the diamond lattice 
(Z  = 4), the bcc lattice (Z  = 8), and the fcc lattice (Z  = 12). 

5. R A N D O M  W A L K S  O N  H E X A G O N A L  L A T T I C E S  (12) 

In the previous paper (4) we discussed random walks on the hcp lattice 
in which all the jump probabilities are assumed to be the same. Here we 
generalize the problem and consider the case with two jump probabilities. 
The hcp lattice consists of two sublattices, A and B. Each lattice site has six 
nearest neighbors on the same sublattice and six on the other sublattice. 
The jump frequencies between sites belonging to the same sublattice and to 
different sublattices are designated as PA and vB, respectively. Since the 
procedure of calculating the various quantities is exactly parallel to that in 
the previous paper, only the final results are given here. 

The value of P(0, 1) and the return probability/~r are plotted in Fig. 2 
as a function of the ratio R =--va/v A. In the limit of R o 0 ,  the lat- 
tice reduces to a two-dimensional triangular lattice; P(0, 1) increases as 
- (,/-3-/2~r)ln R + 0.87118 and the return probability approaches unity. On 
the other hand, in the limit of R-~  ce, the lattice approaches a three- 
dimensional lattice with Z = 6 [referred to as hcp(lim) in the table]; the 
values approach those for the sc lattice. 

In the hcp lattice, the diffusivity is specified by the two principal 
diffusion coefficients D z and Dx, parallel to, and perpendicular to the c 
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Fig. 2. The return probability and P(0, 1) for anisotropic hexagonal lattices. The abscissa is 
the ratio of the interplane and intraplane jump frequencies. The broken line: -(~-3/2e) 
ln(ua/uA) + 0.87118. 
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Correlation factors for diffusion in anisotropic hexagonal lattices. 

axis, respectively. Correspondingly, the two correlation factors fz and fx are 
defined, which are plotted in Fig. 3 as a function of R. These values were 
compared with those evaluated by Mullen, (13) proving that the approxima- 
tion adopted by Mullen is very good. 

6. C O R R E L A T I O N  F A C T O R  FOR I M P U R I T Y  D I F F U S I O N  

For impurity diffusion, the jump frequency of the vacancy at sites near 
an impurity atom is not the same as that at sites far from the impurity 
atom; the vacancy is no longer an ideal random walker, in contrast to the 
case of self-diffusion. The calculation of the correlation factor for impurity 
diffusion has been performed by several investigators with various degrees 
of approximation (see Ref. 2). 

It is shown here that the problem can be solved rigorously by applying 
the theory of random walks on an imperfect lattice. The present method is 
analogous to the Green's function method for lattice vibration of an 
imperfect lattice. (14) We consider a so-called "five jump frequency model" 
in an fcc lattice (Fig. 4). The diffusion coefficient of impurity atoms in this 
model is written as (15) 

D = g  ~ - 1  a 12C~ W2f = a2Cv --W3 f (9) 
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Fig. 4. Vacancy jumps near an impurity (double circle) in an fcc crystal. W 0 - W 4 are jump 
frequencies: Wl, of a vacancy between nearest-neighbor sites of an impurity; 1412, of an 
impurity-vacancy exchange; W3, from nearest-neighbor to non-nearest-neighbor positions; 
W4, for the reversed jumps of W 3 ; Wo, for all other vacancy jumps. 

where a is the lattice constant, C v and C[ the vacancy concentration at 
normal sites and at the first-nearest-neighbor sites of impurity atoms, 
respectively, f the correlation factor, and W~ the jump frequencies of the 
vacancy as defined in the figure. 

Suppose that an impurity atom has jumped from site (110) to the 
origin (000) at time t = 0. The average cosine (cos 0 )  is written as 

(cos0~ = W2[ T ( l l 0  ) + T(101)+  T ( 0 1 1 ) -  T ( l l 0 ) -  T ( i 0 1 ) -  T(010)] 

(10) 

where T(l) is the mean stay time at site !. T(I) may be written as 

tO) = fo~ (1, t) dt (1 l) 

where A (!, t) is the probability that the vacancy is found at site 1 at time t; 
A (1, t) satisfies the following equation: 

d A ( l , t ) =  WoE[A(l+d,t ) -  A(l , t ) ]  + L(l , t)  (12) 
d 

where d is a vector connecting neighboring sites and L(I,t) is a term 
resulting from the "imperfection" of the lattice. A lattice site will be called 
"perfect" if the jump frequencies of a vacancy from and to all the 
neighboring sitesare W0, and will be called "imperfect" otherwise. For the 
origin, which is a sink of the walker, e.g., 

L(O,t) = lZWoA (0, t) + ( W  2 - Wo)2A(d,t ) (13) 
d 

Note that L(l, t) is a linear combination of A (l, t)'s. By integrating both 
sides of Eq. (13) with respect to t, we have a set of simultaneous equations 
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for the T(l)'s: 

where 

T ( I ) - @ 2  ~ T ( l + d ) -  1 A(I, 0 ) + B ( I )  
12W o d 

B ( I ) -  1 fo~L(l,t)dt 
12W 0 

(14) 

(15) 

The above equation can be formally solved by using the Green's function 
G(s) = P(s, 1) defined in the perfect lattice (Section 2); 

[ 1 A(I ' ,O)+B(I ' ) ]  T(I) = ~ G(I - 1') ~ (16) 
I' 

There are 55 unknown T(l)'s corresponding to 55 imperfect lattice sites; a 
set of 55 simultaneous equations must be solved. With the aid of group 
representation theory, however, the problem can be greatly simplified. 
Since the average cosine has T~ symmetry, it is sufficient to treat a system 
with six unknowns belonging to this symmetry. 

The correlation factor can be expressed in terms of W~, as 

2W, + ( 7 -  F ) W  3 
f =  2W 1 + 2W 2 + ( 7 -  F ) W  3 (17) 

where F is expressed by the ratio of two polynomials of the fourth order in 
a = W4/Wo. The coefficients of the polynomials are complicated functions 
of G(l)'s, which are determined to yield 

F = 10a4 + 180"3122a3 + 924"3303~2 + 1338.0577a (18) 
2a 4 -4- 40.1478a 3 + 253.3000a 2 + 595.9726a + 435.2839 

The corresponding expression derived by Manning ( is~ is 

F =  10a4 + 180"5a3 + 927c~2 + 1341ct (19) 
2t~ 4 + 40.2a 3 + 254oL 2 + 597a + 436 

which is in excellent agreement with the exact expression (18). 
Details of the procedure and the result for other lattices will be 

reported elsewhere. ( ~6~ 

7. CONCLUSIONS 

The theory of random walks provides integral methods for the calcula- 
tion of correlation factors for diffusion. Although previous calculations by 
various methods with different degrees of approximation yield accurate 



Random Walk Properties of Lattices and Correlation Factors 485 

enough values numerically the present method is systematic and simple, 
and is applicable to any unsolved problems. 
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